Controversies in Airway Management:

Pediatric and Adult

Peter DeBlieux, MD LSUHSC SCHOOL OF MEDICINE SECTION OF EMERGENCY MEDICINE SECTION OF PULMONARY AND CRITICAL CARE pdebli@lsuhsc.edu

<section-header><section-header><section-header><section-header><list-item><list-item><list-item>

CASE ONE

EMS called to evaluate 38 year old female. Family members state "she is not acting right" RR 42 T 40 C P 132 BP 112/88 GCS is 6 and she has a petechial skin rash SAO2 97% on 40% VM

EMS Management

RSI decision made based on airway protection concerns and expected transport time of 45 mins

Etomidate and Succinylcholine administered

Attempted Direct Laryngoscopy failed when trismus identified with limited mouth opening

Patient oxygenation maintained with BVM until paralytics metabolized

Identifying a difficult airway at the time paralytics are administered is poor form

Re	trospective review of 1,	828 ED cases
	Attempts % V	Vith AE
	1 14	4.2 %
	2 4	7.2%
	3 6	3.6%
	4 7	0.6%
	Adverse Events (AE): aspiration esophageal intubation, hypotensio	, desaturation, on, dysrhythmia, arrest.
Sakles J	Annals of Emergency Medicine	2013; 20:71.

Difficult Direct Laryngoscopy LEMON

Obstruction/Obesity

Neck Mobility

Testing The LEMON Law Prospective study the LEMON Law in 156 ED patients . Three features were highly predictive of a poor glottic view:					
	Big Teeth				
	Small Mouth	<3 finger breaths			
	Short Neck	<2 finger breaths			
Reed JM.	Emerg Med Journ	al 2005; 22:102-107.			

Difficult Bag Mask Ventilation MOANS Mask Seal Obstruction/Obesity Age No Teeth Stiff

Difficult EGD RODS

- Restricted Mouth Opening
- Obstruction
- Distorted Anatomy
- Stiff lungs or C-spine

EMS Management

Patient is relaxed and laryngoscope placed in oral cavity

Within 20 seconds Alarms announce Oxygen saturations are 86% and dropping !!!

100% oxygen saturation does not mean you have an adequate oxygenation reserve

Who Desaturates

Extremes of age-pediatric and elderly patients
Patients with co-morbidities- CHF, COPD, DM, Chronic illness
Pregnant patients
Morbidly obese patients

GOALS

100% Non rebreathing mask if saturations are 100%
100% Non rebreathing mask for 3-5 minutes prior to RSI
Nasal Cannula 15 L/min
Mask seal ventilations offers 98% FiO2

CASE THREE

32 year old male EMS response for ETOH intoxication and occipital laceration. Patient fell from bar stool with GCS 12, agitated, C- collar and spine board precautions. <u>5 ft 8 inches 340 lbs</u>

41

42

EMS Management 100% NRB placed - SAO2 98% Patient combative Emesis occurs Zofran IVP

CASE FOUR

42 year old female is despondent after losing her job and finding out she is pregnant. She has ingested full bottles of Soma and Valium after drinking a pint of Crown Royal. Her GCS is 3 and a decision is made to electively intubate. **EMS** Management

100% FiO2 per NRB

Elective RSI

Etomidate and Rocuronium IVP

ED Management

Direct laryngoscopy

Rapid desaturation to 85%

BVM unable to raise SAO2 > 86%

BVM Technique

 Bringing mandible to the mask, <u>not</u> mask to the mandible
 Nasal airway and oral airway supplies as a standard
 Failed BVM dictates better BVM technique

What's Your Bag?

Low Tidal Ventilation in intubated patients makes a difference in lung injury. Goal is to maintain Tidal Volumes in the 6-8 cc/kg PBW to improve outcome in ARDS and in those patients with multilobar disease, ARDS, Asthma/COPD, shock

Resp Care 2019;64(5):595-603

Your Bag

 Consider utilizing a Pediatric AMBU bag for adult patients.
 Peds AMBU Avg TV 663 cc vs Adult TV 981 cc

 Educate Team regarding the patient safety aspects of LTV

CASE FIVE

17 year old female s/p MVC unrestrained driver with significant facial/mandible/dental trauma Vitals: Pulse 122 BP 134/86 mmHg <u>RR 24 SAO2 79% on NRB</u>

EMS Management

C-collar spine board

Patient's condition progresses with tongue edema and no SAO2 improvement with BVM

EMS Management

RSI decision made given Etomidate and Sycchinylcholine

Inability to visualize the glottis, 3 attempts at intubation with video and direct laryngoscopy have failed

EMS Management

Attempts made to dilate incision in the cricothyroid membrane

Passage of tracheostomy tube and insufflation with resultant neck swelling and lack of ETCO2 confirmation

Facial trauma and no landmarks?

- The tongue is your friend find it and follow it to the glottis
- Place a suture in the tip of the tongue and pull forward-epiglottis will follow
- Suction, suction, suction...
- 4-finger rule for the cricothyroid membrane

EMS Management

IV access and fluid bolus of 500 cc RL initiated

Elective RSI Ketamine and Rocuronium IVP

Intubation, even if indicated, may not be the first and best step.

Intubating the Critically III

Best Guess "Will the patient be better off physiologically with my resuscitation efforts in the next 15 mins?"

If <u>YES</u>- then resuscitate before RSI

If <u>NO</u> then there is an immediacy to act- proceed with RSI

Anesth Analg. 2021; 395-405.

